skip to main content


Search for: All records

Creators/Authors contains: "Asherloo, Mohammadreza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the use of hydride-dehydride non-spherical Ti-6Al-4V powders in laser powder bed fusion process and the effects of post-heat-treatments on additively manufactured parts. As-built parts show anisotropic microstructure with α′ martensite and some β phases. Post heat-treated parts exhibit α + β phases, with characteristics dependent on the heat treatment. Heat treatment below β-transus leads to homogenized grain structures with improved corrosion resistance. Electrochemical analysis reveals a very stable corrosion rate due to faster formation of a protective passive layer aided by the fine-structured β phase. X-ray photoelectron spectroscopy examines corrosion behavior and film growth mechanism in saline water. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. The diffusion phenomenon in the Ti–Ni binary system was investigated at a temperature of 1173 K. Microstructure and texture analysis revealed the formation of three stable intermetallic compounds, namely Ti2Ni, TiNi, and TiNi3, as well as two metastable intermetallic compounds, including Ti3Ni4 and Ti2Ni3, at the interfacial diffusion zone. The nucleation surface energy increase was analytically estimated, and marker experiments were conducted using thoria particles, both of which showed that Ti2Ni was the first compound to form at the Ti–Ni diffusion interface. At a temperature of 1173 K, using the Wagner method, the integrated diffusion coefficients for the Ti2Ni, TiNi, and TiNi3 phases were calculated to be 3.53 × 10−12, 18.1 × 10−15, and 6.2 × 10−15 m2/s, for, respectively. 
    more » « less